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ABSTRACT

Data Encryption and Hashing Schemes for Multimedia Protection

Kamran Khoshnasib Fallah

There are millions of people using social networking sites like Facebook, Google+, and Youtube every

single day across the entire world for sharing photos and other digital media. Unfortunately, sometimes

people publish content that does not belong to them. As a result, there is an increasing demand for qual-

ity software capable of providing maximum protection for copyrighted material. In addition, confidential

content such as medical images and patient records require high level of security so that they can be pro-

tected from unintended disclosure, when transferred over the Internet. On the other hand, decreasing the

size of an image without significant loss in quality is always highly desirable. Hence, the need for efficient

compression algorithms.

This thesis introduces a robust method for image compression in the shearlet domain. Motivated by the

outperformance of the Discrete Shearlet Transform (DST) compared to the Discrete Wavelet Transform

(DWT) in encoding the directional information in images, we propose a DST-based compression algorithm

that provides not only a better quality in terms of image approximation and compression ratio, but also

increases the security of images via the Advanced Encryption Standard. Experimental results on a slew

of medical images illustrate an improved performance in image quality of the proposed approximation ap-

proach in comparison to DWT, and also demonstrate its robustness against a variety of tests, including

randomness, entropy, key sensitivity, and input sensitivity. We also present a 3D mesh hashing technique

using spectral graph theory. The main idea is to partition a 3D model into sub-meshes, followed by the

generation of the Laplace-Beltrami matrix of each sub-mesh, and the application of eigen-decomposition.

This, in turn, is followed by the hashing of each sub-mesh using Tsallis entropy. The experimental results

using a benchmark 3D models demonstrate the effectiveness of the proposed hashing scheme.
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CHAPTER 1

INTRODUCTION

1.1 FRAMEWORK AND MOTIVATION

Nowadays, massive amounts of information can be stored in storage systems, using a wide variety of formats

and methods. This data, which includes visual data like medical images, and non-visual data like patient

records is a private and confidential property of its owners. There is, therefore, an increasing demand for data

security, i.e. privacy, integrity and authentication [1]. Techniques like watermarking and image encryption

are used to provide authentication, confidentiality, and privacy to images and other types of visual data like

video and 3D objects. In this chapter, we introduce some applications for image encryption techniques and

go on to discuss different cryptography methods for security.

1.2 APPLICATIONS OF IMAGE ENCRYPTION TECHNIQUES

The following are some well-known usages of image security methods [1].

VIDEO CONFERENCING

Video conferencing applications are an integral part of business and personal communication today. Soft-

ware tools, such as Skype, Oovoo, Webex and Google video have made it possible for ordinary people to

communicate easily and seamlessly. The information contained in these video streams can be sometimes

priceless; for example, when companies discuss their new products on video conferences with their partners.

Therefore, strong security protocols are required to protect the confidentiality of participants and the data

stream.

1
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TELEMEDICINE

In the medical industry, it is essential for doctors to be able to access patient information. The storage of

such information, due to sheer volume, often requires the use of a large number of storage devices. This

problem can be solved through the establishment of a distributed database, through which patient data can

be made available to doctors on demand, following authentication and authorization.

SURVEILLANCE

At airports, railway stations, and other public places, surveillance cameras record the activities of people to

keep track of illegal activity. This data is always transferred to a central database. Transfer and storage of

this data should be secure, so that individual privacy can be protected.

VIDEO ON DEMAND

Video on Demand (VOD) is a paid service, through which a client can stream his/her favorite movies.

The provider of such a service needs a mechanism to protect the media stream from unauthorized users.

Moreover, an authorized user may record the movie and sell it in the form of a DVD or CD, resulting in

copyright violation. Hence, it is crucial for movie companies to find a secure method to prevent unauthorized

access to/publication of the media, while ensuring that the customer continues to retain easy access to the

stream.

DVD

DVD is a storage media, designed to overcome the storage limit of the CD. To protect a movie which is

recorded in a DVD, the trusted hardware technology is used, meaning that a DVD can be played only on the

hardware that is licensed by the DVD consortium. This protection is applied by an encryption algorithm. As

a result, only the movie recorder and player hardware, which know both the encryption algorithm and the

encryption key, have the ability to play the movie.

PAY-TV NEWS

Pay-TV is a type of TV channel that a client pays to watch for a specific duration. Access to the service can

be continually renewed through the payment of a fee. In order to implement security, Pay-TV encrypts the

channel stream, using different encryption keys.

2
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1.3 ENCRYPTION REQUIREMENTS

There are several important properties to design a good encryption algorithm.

1.3.1 LEVEL OF SECURITY

Different levels of security are needed in different applications. For example, DVD and Pay-TV, which exist

for the purpose of profit and revenue, require a higher level than video surveillance cameras, which basically

exist to provide security [2].

1.3.2 SPEED

Images and multimedia, compared to text, constitute a major part of internet traffic. Thus, image and

multimedia encryption algorithms should be designed with more emphasis on execution speed. On the other

hand, in applications that are used for sending patients’s documents to a health center over the Internet,

speed might not be an important issue [1].

1.3.3 LOW RESOURCE USAGE

A good encryption algorithm uses low resources and CPU cycle. Despite the fact that computers and portable

devices, nowadays, have faster CPU and more RAM than ever before, an efficient algorithm can make the

difference between success and failure.

1.3.4 EASE OF IMPLEMENTATION

A good encryption algorithm must be efficient and easy to implement, at the software as well as the hardware

level [2].

1.4 CRYPTOGRAPHIC PRIMITIVES

In [2], cryptographic functions or primitives are categorized as follows:

• Unkey primitives

– Arbitrary length hash functions

– One way permutation

– Random sequences

3
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• Symmetric key primitives

– Symmetric key cipher

* Block cipher

* Stream cipher

– MAC functions

– Signatures

– Pseudorandom sequence

– Identification primitives

• Public key primitives

– Public key ciphers

– Signatures

– Identification primitives

In this thesis, we examine the block cipher symmetric key primitive, which is explained in the following

section.

1.4.1 BLOCK CIPHER CRYPTOGRAPHY

Using block cipher cryptography, both the sender and the receiver use the same secret key to encrypt and

decrypt data (Fig. 1.1). It is called block cipher, because a block of data (usually 64, 128 or 256 bits of

data) is encrypted all together via a k-bit key (k usually is 56, 64, 128, 192 or 256 bits), and then sent to

the receiver. At the receiver’s end, the same key is used to decrypt the encrypted data. A major advantage

of block ciphers is their extremely fast encryption/decryption speed, compared to other methods both in

hardware and software implementation.

Some well-known block ciphers are:

• MARS: This encryption, introduced by IBM, encrypts a 128-bit block of data with a 128 to 448-bit

key (in 32-bit increments).

• XOR cipher: In this method, a block of n bits of data is XORed with an n-bit key, to create an n-bit

encrypted data. If n is large (e.g. 2048), it will be infeasible to break this encryption.

4
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Plain text block

Cipher text

block

Encrypttion Decrypttion

Plain text block

n bits n bitsn bits

k bits Keyk bits Key

FIGURE 1.1: Block cipher encryption/decryption.

• DES: In this cipher, a block of 64 bits of data is encrypted with 56-bit key to a 64 bits cipher.

• Triple-DES: This cipher is created by three cascaded normal DES block ciphers, and comes with the

advantages of a 168-bit key. However, the speed of cipher/decipher process is low.

• AES: In this encryption, 128 bits of data are encrypted with a 128,192, or 256-bit key to a 128-bit

cipher text.

• Chaotic maps: In this method, chaotic map generators are used to create a random sequence of

numbers that are employed to encrypt the data.

• RC6: This method has a block size of 128 bits and supports key sizes of 128, 192 and 256 bits.

1.5 IMAGE COMPRESSION

Image or video compression is a process that is used to decrease the amount of data contained in representing

an image or video, and to save the storage or transmission bandwidth. In compression, we decrease quality

to the minimum desirable level. During the reconstruction phase, the image or video are recovered. Fig. 1.2

illustrates the process of compression, storage/transmission of images and videos, and also, the process of

loading/receiving and reconstruction.

The quality of the reconstructed image depends on the application. In some applications, like movies, we

do not need to recover the exact original video stream. Therefore, we can use lossy compression methods. In

lossy compression, some information from the original image or video is ignored to gain more compression

ratio. During the reconstruction phase, we can recover an approximation of the original media. In lossless

methods, the compression algorithm never ignores any part of the data. As a result, the reconstructed image
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Original Image or Video

Compression Uncompression

Storage or transmission

Reconstructed image

or video

FIGURE 1.2: Image/video compress/uncompress block diagram.

or video exactly matches the original. However, in lossless methods, the compression ratio is not as good as

in lossy methods [3]. Some of the lossless image compression methods are:

• Prediction based methods [4]

• DPCM and Predictive Coding

• Entropy encoding

Some lossy compression methods for image compression are:

• Fractal compression [5]

• Transform coding

• Chroma subsampling

The transform coding is the most commonly used lossy compression method. It involves the application of

a Fourier-related transform such as the Discrete Fourier Transform (DFT) or the discrete wavelet transform,

followed by quantization and entropy coding. We examine this idea in the next chapter. However, instead of

the discrete wavelet Transform, we employ the discrete shearlet transform (DST) followed by a novel lossy

compression method to compress the images.

1.6 WAVELET TRANSFORM FOR IMAGE CODING

In this section, we introduce the wavelet transform that is used in image compression algorithms. Wavelet-

based techniques have demonstrated the ability to provide high-coding efficiency as well as spatial and

quality scalability features [3]. First, we introduce Short Time Fourier Transform (STFT), because it helps

us understand DWT better.
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1.6.1 STFT AND DWT

Wavelets were introduced more than two decades ago to overcome some of the weaknesses of the Fourier

transform. The wavelet transform is more suitable for transitional properties of signals, while the Fourier

transform is mostly applicable to steady behaviors. To improve the Fourier transform to model the transient

characteristics of a signal, STFT was designed. Let f : R → R be a real function, STFT is defined as

F (ω, τ) =

∫ +∞

−∞

f(t)w(t− τ)e−jωtdt (1.1)

where w(t) is called the time domain windowing function. There are numerous functions that can be used

as w(t), the simplest being a rectangular window that has a unit value over a time interval and has zero

elsewhere.

w(t) =

⎧⎪⎨⎪⎩
1 τ ≤ t ≤ τ + t1,

0 otherwise.

(1.2)

where t1 ∈ R
+ and τ ∈ R. Therefore, the STFTmaps a one-dimensional function f(t) to a two-dimensional

function of time moment (τ ) and frequency moment (ω) which is called F (ω, τ). In a similar way, wavelet

maps a one dimensional function to a 2D domain of a and τ , where a and τ denote dilation (scaling) and

translation in time, respectively. The continuous wavelet transform of a function f(t) with respect to a

wavelet ψ(t) is defined as [3]

W (a, τ) =

∫ +∞

−∞

f(t)|a|−1/2ψ∗[(t− τ)a−1] dt (1.3)

Where a and τ are real variables, and * denotes the complex conjugation operator. The function, ψ(t), is

called the mother wavelet function and it must satisfy two conditions

• ψ should integrate to zero ∫ +∞

−∞

ψ(t) dt = 0 (1.4)

• ψ should have finite energy ∫ +∞

−∞

|ψ(t)|2 dt < +∞ (1.5)

With these two conditions, the wavelet transform can be written as

W (a, τ) =

∫ +∞

−∞

f(t)ψ∗
aτ (t) dt (1.6)

where

ψaτ (t) = |a|−1/2ψ[(t− τ)a−1] (1.7)
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The inverse wavelet transform is defined as

f(t) =
1

C

∫ +∞

−∞

∫ +∞

−∞

|a|−2W (a, τ)ψaτ (t) da dτ (1.8)

where

C =

∫ +∞

−∞

|ψ̂(ω)|2|ω|−1dω (1.9)

and C should be constant and finite. Two well-known ψ(t) functions are: Morlet wavelet

ψ(t) = e−t2/2.ejω0t (1.10)

with the Fourier transform of

ψ̂(ω) = (2π)1/2e(ω−ω0)2/2 (1.11)

and Haar wavelet

ψ(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1, 0 ≤ t ≤ 1/2,

−1, 1/2 < t ≤ 1,

0, else.

(1.12)

with the Fourier transform of

ψ̂(ω) = je−jω/2 sin2(ω/4)

ω/4
(1.13)

The STFT uses sinusoidal functions as its base functions which maintain the same frequency over time, but

the wavelet uses the mother wavelet functions. Hence, wavelets vary in both position and frequency over

time. Fig. 1.3 depicts some popular mother wavelet functions (ψ(t)).

1.6.2 FOURIER AND WAVELET TRANSFORMS

2D Fourier transform of a 2D function f(t) is defined as

Ff(t) = f̂(ω) =

∫ +∞

−∞

∫ +∞

−∞

f(t)e−2πj<ω,t> dt (1.14)

and inverse 2D Fourier transform is

F−1f̂(ω) = f(t) =

∫ +∞

−∞

∫ +∞

−∞

f̂(ω)e2πj<ω,t> dω (1.15)

where t ∈ R
2 and ω ∈ R

2.

Let f(x, y) be a 2D function, we define the 2D wavelet transform as [3]

W (a, τx, τy) =

∫ +∞

−∞

∫ +∞

−∞

f(x, y)ψ∗
aτxτy(x, y) dxdy (1.16)

8



www.manaraa.com

−5 0 5
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

1.5

(a) (b)

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−5 0 5
−1

−0.5

0

0.5

1

1.5

(c) (d)

FIGURE 1.3: Some well-known wavelets: (a) Mexician hat, (b) Mayer, (c) Morlet, (d)
Gaussian.

and the inverse 2D wavelet transform is

f(x, y) =
1

C

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

W (a, τx, τy)|a|−3ψaτxτy(x, y) dadτxdτy (1.17)

where C is defined as above and should be constant and finite, and the Ψ(ω) is the 2D Fourier transform,

and ψ(x, y) is the mother wavelet function.

1.7 DISCRETE WAVELET TRANSFORM IN IMAGE COMPRESSION

The 2D DWT can be used for the image encoding and compression. The steps of this process are: image

data decomposition, quantization of the transformed coefficients, and coding of the quantized transformed

coefficients. The image decomposition is mostly a lossless process which transfers image data from the

spatial domain to spectral domain. The information loss takes place during the quantization step. During

the coding step, we apply compression algorithms. Fig. 1.4 depicts the process. First we partition an

image to four subbands and name them LL1, LH1,HL1,HH1, as in Fig. 1.4 where L means low band,
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H means high band, and index 1 shows the level of decomposition. This decomposition can be repeated

more than 1 level as shown in Fig. 1.4(b). The filters used to compute the DWT are generally the symmetric

quadrature mirror filters (QMFs). Some well-known QMF filters are Haar, Beylkin, Coiflet, Daubechies,

Symmlet, Vaidyanathan, and Battle. During quantization, each subband is quantized differently depending

on its importance. In the coding step, compression algorithms, such as Embedded Zerotrees of Wavelet

transforms (EZW) are used to compress data [3].

(a) (b)

FIGURE 1.4: Wavelet decomposition: (a) first level decomposition, (b) second level
decomposition.

1.8 SHEARLETS

The shearlet transform is a recent concept in image processing. It is a mathematical model that is designed

to overcome some of the limitations of wavelet transform. Wavelets model the edges of an image and point-

wise singularities better than the DFT. However, in edge detection, it is important to identify the location of

an image’s edge as well as its geometrical property. Wavelets are isotropic, and therefore unable to capture

the geometric regularity along the singularities of the surface. On the other side, the shearlet transform can

model the geometric property of an image better due to its anisotropic nature.

10
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1.8.1 CONTINUOUS SHEARLET TRANSFORM (CST)

Let v : R → R be a function defined as

v(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, x < 0,

35x4 − 84x5 + 70x6 − 20x7, 0 ≤ x ≤ 1,

1, x > 1.

(1.18)

another candidate for v(x) is

ṽ(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x < 0,

2x2, 0 ≤ x ≤ 1/2,

1− 2(1− x)2, 1/2 ≤ x ≤ 1,

1, x > 1.

(1.19)

and let b : R → R be

b(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
sin((π/2)v(|ω| − 1)), 1 ≤ |ω| ≤ 2,

cos((π/2)v(|ω|/2 − 1)), 2 < |ω| ≤ 4,

0, else.

(1.20)

The function b is symmetric, positive, real function, and supp(b) = [−4,−1] ∪ [1, 4]. Fig. 1.5 shows the

v(x) and b(ω) functions. We define ψ1 via its Fourier transform as

ψ̂1(ω) =
√
b2(ω) + b2(2ω) (1.21)

The second function ψ2 is defined again via its Fourier transform as

ψ̂2(ω) =

⎧⎪⎨⎪⎩
√
v(1 + ω), ω ≤ 0,√
v(1 − ω), ω > 0.

(1.22)

Fig. 1.6 shows these functions.

Let a ∈ R
+, s ∈ R, and x, t, ω ∈ R

2. The 2D continuous shearlet transform of a two dimensional

function f(x) = f(x1, x2) is defined as:

SHf (a, s, t) =< f,ψa,s,t > (1.23)

and multiplication is defined as

(a, s, t).(a′, s′, t′) = (aa′, s+ s′a1/2,Ma,st
′) (1.24)
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FIGURE 1.5: (a) v(x) function, (b) b(ω) function, (c) b(2ω) function.
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FIGURE 1.6: (a) ψ̂1(ω) function, (b) ψ̂2(ω) function.
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where

ψa,s,t =| detMa,s |−0.5 ψ(M−1
a,s x− t) (1.25)

and

Ma,s =

⎡⎣ a a1/2s

0 a1/2

⎤⎦ = BsAa (1.26)

and

Bs =

⎡⎣ 1 s

0 1

⎤⎦ (1.27)

and

Aa =

⎡⎣ a 0

0
√
a

⎤⎦ . (1.28)

It means the matrix Ma,s is the product of anisotropic dilation (scaling) matrix Aa and sharing matrix Bs.

For ω1 �= 0, the value of ψ̂ at ω is chosen to be of the form

ψ̂(ω) = ψ̂(ω1, ω2) = ψ̂1(ω1)ψ̂2(ω2/ω1) (1.29)

so the shearlet transform can be written as

SHf (a, s, t) = a
3

4F−1

(
f̂(ω1, ω2)ψ̂1(aω1)ψ̂2

(
a−1/2(

ω2

ω1
+ s)

))
(t) (1.30)

Where F−1 denotes the inverse Fourier transform in 2D. The shearlet transform has support in

{[−2/a,−1/(2a)] ∪ [1/(2a), 2/a], |(ω2/ω1) + s| < √
a}.

1.8.2 DISCRETE SHEARLET TRANSFORM (DST)

By sampling the continuous shearlet transform on an appropriate discrete set, a frame or even Parseval

frame for L2(R) can be archived. To obtain the discrete transform, the three parameters should be sampled

as: aj = 2−j (j ∈ Z), s = −l (l ∈ Z), so that a collection of the matrices M2−j ,−l can be obtained. In

addition

M−1
2−j ,−l

=M2j ,l =

⎡⎣ 2j l2
j

2

0 2
j

2

⎤⎦ = Bl
0A

j
0 (1.31)

where

A0 =

⎡⎣ 2 0

0
√
2

⎤⎦ (1.32)
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and

B0 =

⎡⎣ 1 1

0 1

⎤⎦ . (1.33)

Using the continuous ψa,s,t equation, we can obtain

ψj,l,k =| detA0 |
j

2 ψ(Bl
0A

j
0x− k) (1.34)

for j, l ∈ Z, k ∈ Z
2. The discrete shearlet is able to deal with multi-dimensional functions as its continuous

counterpart [7].

1.8.3 APPLICATIONS OF SHEARLET TRANSFORM

There are various fields where the shearlet is used. Generally, all applications of the DWT can employ the

DST too. The following list shows some popular usages:

• Image approximation

• Image denoising

• Edge analysis and identification

In this thesis, we employ the shearlet transform in image approximation and compression.

1.9 ENTROPY

Entropy is the statistical measure of uncertainty in a random variable. The Shannon entropy of a gray scale

image is defined as [14]

H = −
K∑
i=1

pi log2 pi (1.35)

where pi is the probability of color with value i, andK is the total number of different colors (K = 256 for

a gray scale image). When a gray scale message is ideally encrypted, the entropy is eight. An entropy less

than eight means some information can be predicted or there is information leakage.

1.10 THESIS OVERVIEW AND CONTRIBUTIONS

The organization of this thesis is as follows
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❏ The first Chapter contains a brief review of essential concepts and definitions which we refer to

throughout the thesis, and presents a short summary of material relevant to image encryption, com-

pression, wavelets and shearlets.

❏ In Chapter 2, we present a novel shearlet-based image compression method for efficient image trans-

mission over the Internet, combined with the Advanced Encryption Standard (AES) for image secu-

rity. We use the DST to approximate an image and use a novel compression method to reduce its

size. Then AES is used to encrypt the compressed data. The main motivation for this contribution

is saving transmission bandwidth and providing security against unauthorized disclosure for medical

images when they are send over the internet (see Telemedicine subsection). Simulation results indi-

cate that the proposed method provides better image quality than DWT, improves compression ratio,

and increases the security of transmitted images over the Internet.

❏ In Chapter 3, we present a hashing technique for 3D models using spectral graph theory and entropic

spanning trees [39]. The main idea is to partition a 3D triangle mesh into an ensemble of sub-meshes,

then apply eigen-decomposition to the Laplace-Beltrami matrix of each sub-mesh, followed by the

computation of the hash value of each sub-mesh. The main motivation for this contribution is security

of 3D mesh objects against unauthorized copy and usage. Obviously, it is very important for game

companies to have trustable methods to protect their 3D mesh objects against unauthorized usage.

This hash value is defined in terms of spectral coefficients and Tsallis entropy estimate. The experi-

mental results on a variety of 3D models demonstrate the effectiveness of the proposed technique in

terms of robustness against the most common attacks including Gaussian noise, tessellation, welder,

scaling, rotation, as well as combinations of these attacks.

❏ In the Conclusions Chapter, we summarize the contributions of this thesis, and propose several future

research directions that are directly or indirectly related to the ideas developed therein.
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CHAPTER 2

IMAGE COMPRESSION AND ENCRYPTION USING SHEARLETS

This chapter presents a novel shearlet-based image compression method for efficient image transmission

over the Internet, combined with Advanced Encryption Standard (AES) for image security. The discrete

shearlet transform (DST) is a mathematical concept that was recently introduced to overcome some of

the limitations of the discrete wavelet transform (DWT) in image processing applications. Because of its

isotropic property, DWT fails to capture the geometric regularity along the singularities of the surfaces. On

the other hand, the quality of the discontinuous images reconstructed via DST is higher than the quality

of reconstructed images obtained using the DWT method. AES is a widely known symmetric key encryp-

tion/decryption method that is employed in data security applications. The simulation results indicate that

the proposed method provides a better image quality than DWT, improves compression ratio, and increases

the security of images transmitted over the Internet.

2.1 INTRODUCTION

Security and privacy are important issues in all aspects of life. In recent years, with the increasing demand

for Internet-based applications and services, security has become an extremely important concern. In spite

of this, data is mostly transferred unencrypted. In medical applications, image encryption is of paramount

importance. Medical images are confidential records and documents, and should be protected using the

highest levels of security. Transmission channel coding (channel encrypting) and data encrypting are two

well-known methods. In channel coding, IP security (IPSec), Secure Socket Layer (SSL) or similar methods

are used to create a secure path to transfer clear and unencrypted data. In data coding, encrypted data is sent

through an insecure channel. Data Encryption Standard (DES) and Advanced Encryption Standard (AES)
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are widely-used methods of data encryption [8]. Channel encryption and data encryption can be combined

to improve security, but this process requires more resources and more expensive hardware.

Although the bandwidth price has decreased considerably in the past years, images and multimedia

streams are the major bandwidth consumers in both Local Area Networks (LAN) and Wide Area Networks

(WAN). To save the bandwidth, data should be compressed as much as possible. In the subject area of image

compression, there are two widely used methods: Lossy and Lossless [15]. Using the former method, some

parts of data are deleted during the compression to achieve better compression ratio. It is usually applied

to multimedia signals, where the quality is not a big concern at the receiver’s end. MPEG-2 Video codec

for DVD compression is an example of this method. In the latter method, reconstructed data is exactly the

same as the original. Some lossless examples are the LempelZiv (LZ) or DEFLATE method that are used

in PKZIP, GZIP, ZLIB, and PNG. The application determines the method of compression. In the proposed

method, both lossy and lossless methods are employed in different places.

The rest of this chapter is organized as follows. Section 2.2 briefly explains some earlier practices to

compress and securely transfer images over the Internet. Section 2.3 introduces AES encryption briefly.

Section 2.4 reviews the concept of DST. Section 2.5 describes the proposed method based on the shearlet,

ZLIB, and AES for image compression and encryption. Decryption and decompression are explained in

section 2.6. In section 2.7, simulation results and security analysis are provided. In section 2.8, we present

our conclusions.

2.2 OVERVIEW OF WAVELET-BASED IMAGE ENCRYPTION AND COMPRESSION

In this section we briefly explain two methods of image encryption: the wavelet transform followed by DES

encryption, and chaos-based encryption.

2.2.1 WAVELET TRANSFORM AND DES ENCRYPTION

As described in [8], one method for secure image transmission and compression is the Embedded Zero-

tree Wavelet (EZW) and Data Encryption Standard (DES) symmetric encryption/decryption. EZW is an

effective coding technique for image compression. However, DES is not a secure method by today’s security

standards, and there are numerous ways to attack it, such as the improved Davies’ attack, and the attacks

discussed in [11, 10]. More secure methods should, therefore, be chosen.

17



www.manaraa.com

2.2.2 CHAOS BASED ENCRYPTION

In recent years, a slew of methods were proposed to improve encryption using chaos-based algorithms [12,

13, 14]. Awad in [14] proposed four chaos based cryptosystems. Using these algorithms, a two-dimensional

(2D) chaotic map is used to shuffle the pixels’ locations in an image. Then, two perturbed chaotic PWLCM

maps are used in the multiple substitution/permutation rounds. Although the chaotic maps can create high

quality random numbers, they are more prone to different type of attacks [21].

2.3 ADVANCED ENCRYPTION STANDARD (AES)

AES is a cryptography symmetric key encryption standard that was adopted for commercial encryption

usages [19, 20]. It is a new version of symmetric key encryption/decryption protocol that supersedes DES.

The major weakness of DES or Triple DES (3DES) is low encryption speed, in software as well as hardware

implementations. In addition, the encryption key length in DES is 56 bits, which is not enough for most

applications. However, AES was designed with speed as one of the constraints. AES uses 128, 192, or

256-bit key for 128-bit block of data as shown in Fig. 2.1.

AES has different rounds of permutation/substitution for different key lengths. 10 rounds for 128-bit, 12

rounds for 196-bit, and 14 rounds for 256-bit encryption key. The details of AES encryption are beyond the

scope of this thesis, and can be found in [19].

Cipher text ( 128 bits )

Plain text ( 128 bits )

key
128/192/256 bits

AES

FIGURE 2.1: AES block cipher.
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2.4 SHEARLET TRANSFORM AND APPROXIMATION

2.4.1 MOTIVATION

Shearlet is a new concept in image processing that was designed to overcome some of the limitations of

wavelets. Wavelets model the edges of images and point-wise singularities better than DFT. However, in

edge detection, it is important not only to identify the location of an image edge, but also the geometrical

property of the image. Wavelet is isotropic, and is therefore able to capture the geometric regularity along

the singularities of surfaces [16]. Shearlet, on the other hand, is more efficient in modeling the geometrical

property of an image due to its anisotropic nature. There are different ways to define Shearlet and DST [6,

16, 17].

2.4.2 CONTINUOUS SHEARLET TRANSFORM

The Fourier transform reveals only the frequency attributes of an image. The wavelet transform provides a

powerful insight into an image’s spatial and frequency characteristics, and has two parameters: translation

and scale. The basic idea underlying the definition of the continuous shearlet is the use of a 2-parameter

dilation (scaling) group, that is a product of parabolic scaling matrices and shear matrices. Therefore,

shearlet has three parameters: the anisotropic dilation (scaling) parameter a > 0, the shear parameter s ∈ R,

and the translation parameter t ∈ R
2.

Let x ∈ R
2 and ξ ∈ R

2, continuous shearlet in time domain is defined as:

ψa,s,t(x) = a−3/4ψ(D−1
a,s(x− t)) (2.1)

where

Da,s =

⎡⎣ a −a1/2s

0 a1/2

⎤⎦ = BsAa (2.2)

and

Bs =

⎡⎣ 1 −s

0 1

⎤⎦ (2.3)

and

Aa =

⎡⎣ a 0

0
√
a

⎤⎦ . (2.4)

In addition, the mother shearlet function ψ is defined like a tensor product in the frequency domain:

ψ̂(ξ1, ξ2) = ψ̂1(ξ1)ψ̂2(ξ2/ξ1) (2.5)
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where ψ̂ is the fourier transform of the mother shearlet ψ, ψ̂1 is the fourier transform of a wavelet ψ1, and

ψ̂2 is the fourier transform of a bump function ψ2. The continuous shearlet transform associated to this

continuous shearlet is defined by:

SHf (a, s, t) =< f,ψa,s,t > (2.6)

and multiplication is defined as:

(a, s, t).(a′, s′, t′) = (aa′, s+ s′a1/2,Da,st
′) (2.7)

Fig. 2.2 shows the effect of parameters a and s in shearlet transform of a square. This transform can be

shown as matrix coefficients of the unitary representation:

(σ(a, s, t)ψ)(x) = ψa,s,t(x) = a−3/4ψ(D−1
a,s(x− t)) (2.8)

of the shearlet group S = R
+ × R × R

2. The location parameter t can precisely detect the location of

singularities, and the shear parameter s shows the perpendicular direction to singularity [18].

(a)

(b)

FIGURE 2.2: Geometric transformation in shearlet: (a) anisotropic dilation (scaling)
parameter a, (b) shear parameter s.

2.4.3 DISCRETE SHEARLET TRANSFORM (DST)

By sampling continuous Shearlet transform on the appropriate discrete set, a frame or even Parseval frame

for L2(R) can be achieved. To obtain the discrete transform, three parameters should be sampled as follows:

aj = 2j(j ∈ Z), sj,k = ka
1/2
j = k2j/2(k ∈ Z), and tj,k,m = Daj ,sj ,k(m ∈ Z

2) (2.9)
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The mother discrete shearlet that is chosen is the same fashion as in the continuous case, i.e., ψ1 is chosen

to be a discrete wavelet, and ψ2 is chosen to be a bump function with certain weak additional properties.

This system forms an optimally sparse Parseval frame in L2(R).

2.5 IMAGE COMPRESSION AND ENCRYPTION

In the first stage, DST approximation method is used to create the DST matrix. The proposed compression

method employs this matrix to create a smaller one aimed at decreasing the size of the data. It is a lossy

approximation, as a result of which some data are lost. In the second stage, ZLIB lossless algorithm is used

to compress the new coefficient matrix. In the last stage, AES is used to encrypt the compressed matrix of

selected coefficients. Fig. 2.3 shows the compression and encryption block diagrams. The details of this

process are described in the following sub sections.

Original Image DST

Generate a
P x 3 matrix

Zlib compression
of the P x3 matrix

AES encryption
of the ZIP file

Send the
encrypted data

FIGURE 2.3: Compression and encryption block diagram

2.5.1 DST APPROXIMATION

The proposed method uses DST to generate approximation shearlet matrix of the image. Let the original

image be anM×N gray scale image, so that the image size isM×N bytes. After calculating DST, the size

of the DST matrix is 4×M ×N , assuming its elements are 4-byte single precision floating point numbers,

that is 4 times bigger than the original image size. In the next step, DST approximation algorithm which is
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introduced in [16] is employed to create image an approximation matrix, which is the same size as the DST

matrix.

To decrease the size of the approximation matrix, we retain only n percent of its elements having the

largest absolute value, and ignore the others (e.g. write zero on the other elements). The number n indicates

the percentage of the total image pixels that should be retained, and controls the precision of our proposed

method. A larger value of n means a higher image quality. However it also means a higher bandwidth. The

new generated matrix is denoted wc.

2.5.2 COMPRESSION

After computing wc, a new P × 3 matrix is generated according to Algorithm 1.

Algorithm 1 Proposed algorithm to generate a new P × 3 matrix.
1: for each non-zero element in wc do
2: Go to the first empty row of the P × 3 matrix.
3: The first element of the row corresponds to the row number of the non-zero elements in wc.
4: The second element of the row corresponds to the column number of the non-zero elements in wc.
5: The third element of the row corresponds to the value of the non-zero elements in wc in single

precision floating point format.
6: end for

If we retained n percent of the wc coefficients, then P = round( n
100MN). By now, the size of data is

changed fromM ×N to P × 3. To retain the size of the new P × 3 matrix less than the original M × N

image, n must be selected as

P × 8 ≤MN, or round
( n

100
MN

)
× 8 ≤MN, or n ≤ 12

In this calculation, each row in the P × 3 matrix is considered as eight bytes of data: two bytes for each

of the first and the second columns, which are integers between 1 and 32500, and four bytes for the third

column that is a single precision floating point number. In real applications, 2 ≤ n ≤ 5 is a good choice for

images. Finally, to decrease the size of P ×3matrix furthur, we use the ZLIB lossless compression method.

2.5.3 AES ENCRYPTION

The compressed P × 3 matrix is sent to AES module to be encrypted via a private keyK . The receiver side

uses the same K to decrypt the encrypted data. In most commercial applications, 128-bit AES is used. In

more secure applications, on the other hand, 256-bit AES is a good candidate.
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2.6 IMAGE DECRYPTION AND RECONSTRUCTION

For decryption and reconstruction, the reverse process should be applied. First, the encrypted data is de-

crypted. Then the data are uncompressed to extract the P × 3 matrix. In the next step, the matrix wc is

constructed. Finally, using the DST approximation method in [16] the original image can be recovered

(Fig. 2.4).

Recieve the
encrypted data AES decryption

Uncompress
the ZIP file

Reconstruct
DST matrix

Reconstruct the
original image

FIGURE 2.4: Decryption and reconstruction block diagram.

2.7 SIMULATION RESULTS AND SECURITY ANALYSIS

The proposed method was applied to four images, and the results are shown in the Fig. 2.5-2.8. In addition,

n = 4 in all experiments, and 128-bit AES is used for encryption/decryption. The first image in each set is

the original image. The second image is the non-zero coefficients of approximation matrix wc. The third

image is the normal representation of wc. The fourth image is the zoomed view of the compressed and

encrypted matrix of coefficients. The last image in each set shows the reconstructed image on the receiver’s

side.
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(a) (b) (c)

(d) (e)

FIGURE 2.5: Dental medical image: (a) original image, (b) non-zero coefficients of
the approximation matrix, (c) approximation matrix wc, (d) small matrix of coefficients
after ZLIB compression and AES encryption, (e) reconstructed image.

(a) (b) (c)

(d) (e)

FIGURE 2.6: Brain medical image: (a) original image, (b) non-zero coefficients of the
approximation matrixwc, (c) approximation matrixwc, (d) small matrix of coefficients
after ZLIB compression and AES encryption, (e) reconstructed image.
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(a) (b) (c)

(d) (e)

FIGURE 2.7: Lena image: (a) original image, (b) non-zero coefficients of the approx-
imation matrix wc, (c) approximation matrix wc, (d) small matrix of coefficients after
ZLIB compression and AES encryption, (e) reconstructed image.

(a) (b) (c)

(d) (e)

FIGURE 2.8: Barbara image: (a) original image, (b) non-zero coefficients of the ap-
proximation matrix wc, (c) approximation matrix wc, (d) small matrix of coefficients
after ZLIB compression and AES encryption, (e) reconstructed image.
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TABLE 2.1: PSNR for wavelet and shearlet (dB) (n = 4).

Image Wavelet PSNR Shearlet PSNR
Dental image 40.186 43.356
Brain image 54.797 59.405
Lena 29.830 34.539
Barbara 24.656 29.589

TABLE 2.2: MSE for wavelet and shearlet (n = 4).

Image Wavelet MSE Shearlet MSE
Dental image 6.230 3.002
Brain image 0.215 0.075
Lena 67.618 22.866
Barbara 222.596 71.484

2.7.1 COMPARISON BETWEEN RECONSTRUCTED IMAGE QUALITY IN SHEARLET AND WAVELET

To evaluate the quality of the reconstructed image the Peak Signal-to-Noise Ratio (PSNR) is used:

PSNR = 10 log

(
2552MN∑M

i=1

∑N
j=1(Pij −Qij)2

)
dB (2.10)

where MN is the total number of pixels, and P = (Pij) and Q = (Qij) are the original and the recon-

structed image. A larger PSNR means a better quality of reconstructed image.

The Mean Square Error (MSE) is another widely-used measure to evaluate reconstructed image quality:

MSE =

∑M
i=1

∑N
j=1(Pij −Qij)

2

MN
(2.11)

A small MSE means a smaller error in image reconstruction. The quality and error of the reconstructed

images in both shearlet and wavelet methods are shown in Tables 2.1 and 2.2, which illustrates that DST ap-

proximation has better quality and less error than DWT. Fig. 2.9 shows the zoomed area in the reconstructed

DWT and DST images.

2.7.2 COMPRESSION RATIO

The ratio of the encrypted image to the size of the original image is defined as compression ratio in the

proposed method. As shown in Table 2.3, the proposed method provides a high compression ratio.
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(a) (ã)

(b) (b̃)

(c) (c̃)

(d) (d̃)

FIGURE 2.9: Comparing wavelet approximation and shearlet approximation: (a)-(d)
zoomed wavelet approximation, (ã)-(d̃) their equivalent zoomed shearlet approxima-
tions.
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TABLE 2.3: Image compression ratio in the proposed method (n = 4).

Image Compression ratio
(Transmitted data / Original file)

Dental image 0.0935
Brain image 0.0909
Lena 0.3824
Barbara 0.3183

2.7.3 CORRELATION OF ADJACENT PIXELS

Correlation coefficient of a sequence of adjacent pixels is defined by [14]:

E(P ) =

∑M
i=1

∑N
j=1 Pij

MN
(2.12)

D(P ) =

∑M
i=1

∑N
j=1[Pij − E(Pij)]

2

MN
(2.13)

cov(P,C) =

∑M
i=1

∑N
j=1[Pij − E(Pij)][Cij −E(Cij)]

T

MN
(2.14)

std(P ) =
√
D(P ), std(C) =

√
D(C) (2.15)

rP,C =
cov(P,C)

std(P )× std(C)
(2.16)

where P = (Pij) is the original image, C = (Cij) is the encrypted image, cov(P,C) is covariance between

P and C , and std(P ) and std(C) are their respectively standard deviations. Finally, rP,C is the correlation

between the two matrices. Fig. 2.10-2.13 show horizontal, vertical and diagonal pixel correlation distribu-

tion in the original image and horizontal correlation in the encrypted images. The vertical and diagonal

correlation of adjacent pixels in the encrypted images are similar to the horizontal. According to the table,

the encrypted images have low pixel correlation, while the originals have high. To draw these diagrams,

1500 different pairs of horizontally adjacent pixels are randomly selected from the image. Next, pixel val-

ues on location (x+1, y) over the pixel values on location (x, y) are plotted. A similar process is employed

for the vertical and the diagonal adjacent pixels, and the results are similar to the horizontal correlation.
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(a) (b) (c)

(d) (e) (f)

FIGURE 2.10: Dental medical image: (a) original image horizontal adjacent pixel
correlation, (b) original image vertical adjacent pixel correlation, (c) original image
diagonal adjacent pixel correlation, (d) encrypted image horizontal adjacent pixel cor-
relation, (e) original image histogram, (f) encrypted image histogram.

(a) (b) (c)

(d) (e) (f)

FIGURE 2.11: Brain medical image: (a) original image horizontal adjacent pixel cor-
relation , (b) original image vertical adjacent pixel correlation, (c) original image diag-
onal adjacent pixel correlation, (d) encrypted image horizontal adjacent pixel correla-
tion, (e) original image histogram, (f) encrypted image histogram.
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(a) (b) (c)

(d) (e) (f)

FIGURE 2.12: Lena image: (a) original image horizontal adjacent pixel correlation, (b)
original image vertical adjacent pixel correlation, (c) original image diagonal adjacent
pixel correlation, (d) encrypted image horizontal adjacent pixel correlation, (e) original
image histogram, (f) encrypted image histogram.

(a) (b) (c)

(d) (e) (f)

FIGURE 2.13: Barbara image: (a) original image horizontal adjacent pixel correlation,
(b) original image vertical adjacent pixel correlation, (c) original image diagonal ad-
jacent pixel correlation, (d) encrypted image horizontal adjacent pixel correlation, (e)
original image histogram, (f) encrypted image histogram.
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TABLE 2.4: Entropy of the original and encrypted images.

Image Original Encrypted
Dental image 4.3387 7.9960
Brain image 2.2238 7.9966
Lena 7.4464 7.9963
Barbara 7.4604 7.9962

2.7.4 HISTOGRAM ANALYSIS

The image histogram shows how many pixels for each color can be found on the image. In Fig. 2.10-2.13(e)-

(f), the histogram of the original image and the encrypted images are depicted. The encrypted images have

fairly uniform histograms and are significantly different from the original images.

2.7.5 INFORMATION-THEORETIC ANALYSIS

Entropy is the statistical measure of randomness in a random variable. The entropy of an image is defined

as [14]

H(m) = −
K−1∑
i=0

p(mi) log2 p(mi) (2.17)

where p(mi) is the probability of message mi, and K is the total number of different messages (K = 256

for a gray scale image). When a gray scale message is ideally encrypted, the entropy is equal to eight. An

entropy less than eight means some information can be predicted or there is information leakage. Table 2.4

depicts the entropy of the original images and the entropy after encryption.

2.7.6 NIST STATISTICAL TESTS

There are numerous tests to evaluate the randomness of an encryption or a data matrix. One widely-used test

is the National Institute of Standards and Technology (NIST) statistical test. The software package can be

downloaded from NIST web site (http://csrc.nist.gov). The encrypted images were tested using this software

package. In each test, the default value of α = 0.01 is employed, and at the same time, the P -values of

the images are created. An image passes a test if the output is greater than seven, and at the same time,

the P -value ≥ α. The results are shown in Tables 2.5 and 2.6. An encrypted image failing to pass a test is

denoted by a star. The encrypted images passed all except the universal test, where the P -values were zero

and the test failed. In addition, it is important to mention that the non-overlapping template matching tests
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TABLE 2.5: NIST tests results.

ID Test Name Dental Brain
1 Frequency 10 9
2 Block Frequency 10 10
3 Cumulative Sums 10 10
4 Runs 10 10
5 Longest Run 10 10
6 Rank 10 10
7 FFT 10 10
8 Non-Overlapping Template (148 tests) 8 to 10 8 to 10
9 Overlapping Template 10 10
10 Universal 10* 10*
11 Approximate Entropy 10 10
12 Serial 10 10
13 Linear Complexity 10 10

TABLE 2.6: NIST tests results.

ID Test Name Lena Barbara
1 Frequency 10 10
2 Block Frequency 10 10
3 Cumulative Sums 10 10
4 Runs 10 10
5 Longest Run 10 10
6 Rank 10 10
7 FFT 10 10
8 Non-Overlapping Template (148 tests) 9 to 10 7* to 10
9 Overlapping Template 10 10
10 Universal 10* 10*
11 Approximate Entropy 10 10
12 Serial 10 10
13 Linear Complexity 10 10

is a collection of 148 tests. According to the results, all the encrypted images, except Barbara, passed all

NIST non-overlapping tests.

2.7.7 KEY SENSITIVITY TEST

An ideal encryption must be sensitive to any small or large change of encryption key. In other words, a tiny

change in the key should create significate change in the output of encryption.

To calculate the difference between two images P = (Pij) and Q = (Qij) of sizeM × N , the Number
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TABLE 2.7: Encryption key sensitivity test results.

Image NPCR (%) UACI (%)
Dental Image 99.5636 16.9389
Brain Image 99.6332 16.8799
Lena 99.5919 16.7221
Barbara 99.6597 16.7257

TABLE 2.8: Plain text sensitivity test results.

Image NPCR (%) UACI (%)
Dental Image 99.5879 16.8417
Brain Image 99.6541 16.7777
Lena 99.5758 16.7333
Barbara 99.6020 16.7489

of Pixel Change Rate (NPCR) is used [14].

NPCR =

∑M
i=1

∑N
j=1Dij

MN
× 100 (2.18)

where Dij is

Dij =

⎧⎪⎨⎪⎩
0, Pij = Qij,

1, Pij �= Qij.

(2.19)

A higher value of NPCR (close to 100%) shows that the two images are extremely different. Moreover, the

UACI is the average intensity of differences between two matrices, and it is defined as follows

UACI =

∑M
i=1

∑N
j=1 |Pij −Qij |
255MN

× 100 (2.20)

A high value of UACI also shows that the two images are extremely different. Table 2.7 shows the NPCR

and UACI between the new encrypted image and the old one, when one character in the encryption key is

changed.

2.7.8 PLAIN TEXT SENSITIVITY TEST

Like the key change sensitivity, a good encryption must be sensitive to any tiny change of input plain text.

In the plain text sensitivity tests, only one pixel of each sample image was changed, and the NPCR between

the new and old encrypted images are depicted in Table 2.8.
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2.8 CONCLUSIONS

In this chapter, the discrete shearlet transform (DST) was used for image approximation and compression

combined with AES encryption to secure the compressed data. The simulation and tests section shows that

the quality of the reconstructed image is better that using the DWT. We also applied NIST test, correlation,

adjacent pixel correlation, histogram, plain text sensitivity, and key change sensitivity tests to show the qual-

ity of encryption. In more secure applications, 256-bit AES encryption provides a much better application

security.

In chapter 2, we proposed a method for security of multimedia data against unauthorized disclosure,

in the next chapter we will propose a hashing algorithm to provide security of multimedia data against

unauthorized copy and usage ( copyright protection).
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CHAPTER 3

INFORMATION-THEORETIC HASHING OF 3D OBJECTS

In this chapter, we present a robust 3D hashing technique. We use the spectral analysis of a mesh and the

entropic spanning tree to extract the important futures of a 3D mesh to create a unique identifier, which

is called the hash. The main idea is to partition a 3D mesh into sub-meshes. Then, the Laplace-Beltrami

matrix and Tsallis entropy for each sub-mesh are calculated. We then define a hash value, in terms of

spectral coefficients and Tsallis entropy estimator. A vector containing all these hashes is called the hash of

the original 3D mesh. The experimental results on a variety of 3D objects demonstrate the robustness and

effectiveness of the proposed method against the most common 3D attacks, including tessellation, bending,

stretching, rotation, scaling, and pushing.

3.1 INTRODUCTION

3D models are used in many multimedia applications, including 3D movies, and 3D games. Even in digital

libraries, GIS applications, visual reality, e-commerce, education, and medical applications. There is an

increasing demand for 3D object modeling, which makes the security of 3D models an important issue. Fur-

thermore, the ability of users to modify digital content without any perceptual traces adds to the complexity

of the issue. To tackle this problem, 3D watermarking and hash functions can be helpful. In 3D water-

marking, some data are hidden in a 3D object, and can be used for authorization [22]. The cryptographic

hash functions can also be used to control the integrity and the authentication of data. A cryptography hash

function is a map that takes an input with arbitrary length and generates a fixed length output. Usually this

output is a binary string, which is referred to as the hash of input [23].

By recalculating the hash value from underlying data and comparing it to the attached hash value, we can
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verify the authenticity of data [39]. In [45], a robust method for image watermarking was introduced that

generates hashes based on extracting higher order spectral features from the radon projection of an input

image. This projection process is non-invertible and non-linear, so that different hashes can be extracted

from the same image if random permutations of the input are used. Another method was introduced in [25],

which employs the use of non-negative matrix factorization (NMF) for robust image hashing. The basic

idea is to employ the image matrix to create an algorithm for randomized dimensionality reduction that

retains the essence of the original image matrix, while resisting different attacks. Recently, Hu et al. in [26]

used a new variation of the discrete wavelet transform (DWT) algorithm. First, this method extracts robust

bits of High pass-Low pass (HL), Low pass-High pass (LH) and High pass-High pass (HH) sub-bands

in the same middle-frequency scale. A a hash is then generated, based on these sub-bands. Other recent

development includes the presentation of a two stage cascade of dimensionality reduction constructs for face

image hashing [27]. The first stage aims to project the face image to a space where geometric distortions

manifest approximately as additive noise using the NMF method. In the second stage, Oriented Principal

Component Analysis (OPCA), based on estimating signal, is employed.

Typically, a hash algorithm should have three properties: one-way, collision-free, and strongly collision-

free [23]. Normal cryptographic hashes are designed to be extremely sensitive to input, meaning that a

small change in the input creates a large change in the hash value. This is not desirable in 3D authentication

applications. We need a hash algorithm which is resistance against a variety of attacks. In other words, a

small change in a 3D mesh should create a small change in the hash value. This is called a perceptual or

robust hash.

The 3D mesh hashing problem is much complicated that the 2D image hashing. The technologies that

are normally used for 2D cannot be easily extended to 3D. Furthermore, a large number of attacks can be

directed against 3D meshes.

In recent years, the use of spectral analysis in 3D mesh analysis, computer vision, graph theory, and

machine learning has become more widespread. Generally speaking, a spectral method calculates the eigen-

values and eigenvectors corresponding to a linear operator and try to use them to solve a given problem [33].

This method can be used in variety of problems, including mesh parametrization, mesh authorization, and

mesh compression.

The primary motivation of this chapter is to propose a method for 3D mesh authorization and security

by encoding the geometrical and topological properties of a 3D mesh. In order to reduce the computational

cost associated with finding the eigenvalues and eigenvectors of a large matrix, our method partitions a mesh
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to small sub-meshes and generates the hash values for each sub-mesh. We perform extensive numerical

experiments on different 3D meshes to give expanded insight into the potential of the proposed method. In

our approach, we employ the Laplace-Beltrami matrix to convert the 3D mesh to a compact set of data. This

is achieved by retaining a small portion of eigenvalues and eigenvectors of that matrix, containing the major

properties of a 3D shape, and ignoring the others.

The layout of this chapter is as follows. Section 3.2 is devoted to the mathematical background governing

spectral analysis basics, Laplace-Beltrami matrix, spanning tree, and the entropy of a mesh. Section 3.3

presents the proposed 3D hash algorithm. Experimental results using the proposed method are provided in

section 3.4. Finally, section 3.5 summarizes the chapter.

3.2 PROBLEM FORMULATION

A 3D mesh can be represented by using different modeling methods, such as 3D triangle mesh, polyg-

onal mesh, spline and patch, and primitive mesh. A triangle mesh M can be defined as M = (V,T )

or M = (V, E), where V = (vvv1, vvv2, ..., vvvm) is a set of vertices, and E = {eeeij} is a set of edges, and

T = (ttt1, ttt2, ..., tttn) is a set of triangles. A pair of vertices {vvvi, vvvj} are connected by the edge eeeij = [vvvi, vvvj].

Two adjacent vertices are shown as vvvi ∼ vvvj (or simply i ∼ j) if an edge eeeij is connects them. The neigh-

borhood (sometimes referred as the ring) of a vertex vvvi is defined as vvv∗i = {vvvj ∈ V : vvvi ∼ vvvj}. The degree

di of a vertex vi is simply the cardinality of v�
i . We denote by T (v�

i ) the set of triangles of the ring v
�
i .

Fig. 3.1(a) depicts an example of a neighborhood v
�
i , where the degree of the vertex vi is di = 7, and the

number of triangles of the set T (v�
i ) is also equal to 7.

FIGURE 3.1: Illustration of a triangle mesh (left) and vertex ring (right).
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3.2.1 HASH FUNCTION REQUIREMENTS

The object of this chapter is to design a robust hash function that produces a unique identifier for a 3D mesh.

The vast majority of cryptographic hash functions take an arbitrary length string (binary or text) as input and

produce a fixed-length binary string as output, known as the message digest or the hash. There are many

information security applications for hash functions, including the message authentication codes (MAC),

and indexing data in the hash tables for fingerprint. They can also be used as checksums to evaluate the data

integrity [2]. Fig. 3.2 shows the block diagram of a hash function. Some commonly-used cryptography hash

functions are MD5, SHA-1, SHA-512.

FIGURE 3.2: Block diagram of a hash function.

A hash function should have three properties: one-way, collision-free, and strongly collision-free.

• One-way: Given a 3D meshM, it should be easy to generate h = H(M).

• Collision free: Given h, it must be infeasible to find M̄ such that h = H(M̄)

• Strongly collision-free: if M �= M̄ then H(M) �= H(M̄). In other words, two different meshes

should have two different hash values.

Conventional hash functions like MD5 or SHA-1 are extremely sensitive to input variation. i.e. 1 bit change

in the input message changes the hash value dramatically [28]. Perceptual image hash or perceptual 3D

mesh hash functions are different. They create similar hash values for two 3D objects which look the same
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to the human eye. These perceptual hash algorithms are used for image or 3D mesh search/identification in

a large database. In this chapter, we propose a perceptual 3D mesh hashing algorithm.

3.2.2 EIGEN-DECOMPOSITION OF MATRICES

Let xxx = (x1, x2, ..., xn)
T be a non-zero n×1 vector andAAA is an n×n square matrix. The vector xxx is called

the eigenvector ofAAA if and only if it satisfies the following equation [29]

AAAxxx = λxxx (3.1)

where λ is called the eigenvalue corresponding to xxx and is a scalar. To find the eigenvalues and eigenvectors

we write

AAAxxx− λxxx = 000 (3.2)

(AAA− λIII)xxx = 000 (3.3)

where III is the n× n identity matrix. Because xxx is assumed to be non-zero, so the above equation implies

det(AAA− λIII) = 0 (3.4)

The above equation is called characteristic equation, and is an nth order polynomial equation in the un-

known λ. It has ni distinct solutions where 1 ≤ ni ≤ n. The set of eigenvalues is sometimes called the

spectrum ofAAA. For each eigenvalue, λi, we have

(AAA− λiIII)xxx = 000 (3.5)

that gives 1 ≤ mi ≤ ni solutions for each eigenvalue. These vectors are called the eigenvectors associated

with the specific eigenvalue λi. It is important to mention thatmi may or may not be equal to ni, but always

satisfies 1 ≤ mi ≤ ni. After calculating the eigenvalues and eigenvectors, we can decompose the matrix as

AAA = BBBΛΛΛBBB−1 (3.6)

where BBB = (bbb1, ..., bbbn) is an orthogonal matrix whose columns are the eigenvectors and ΛΛΛ = diag{λi :

i = 1, 2, ..., n} is a diagonal matrix of the eigenvalues sorted in descending order of magnitude. The

eigenvectors are mostly normalized, but it is not necessary. If AAA is a symmetric matrix (AAA = AAAT ), then it

has n independent eigenvectors, and the above equation can be written as

AAA = BBBΛΛΛBBBT (3.7)
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In addition, if AAA is a small matrix, eigenvalues and eigenvectors can be computed symbolically using the

characteristic polynomial. Otherwise, numerical methods should be used. In practice mostly numerical

methods are employed because, according to Abel’s theorem, roots of a polynomial equation of order 5th

and higher cannot be expressed simply using nth roots. The iterative algorithms like

• Power method [30]

• Arnoldi iteration [31]

• QR algorithm [32]

are often employed to compute eigenvalues.

3.2.3 SPECTRAL ANALYSIS OF A 3D MESH

Most spectral methods have a basic framework that can be summarized in three steps [33]

• A matrix L = (Lij) is defined according to a meshM. Each entry Lij posses a relation between two

vertices vvvi and vvvj of the mesh. Sometimes two triangles or two edges are employed to define entry

Lij .

• Decomposition of L is performed. i.e., the eigenvalues and eigenvectors of matrix are calculated.

• These eigenvalues and eigenvectors are employed to solve a problem.

According to the above framework, different ways of using the eigenvalues and the eigenvectors generate

different spectral methods. Spectral methods can be classified into three important categories:

• Based on the operator used to define LLL. i.e. Laplacian operator, adjacency matrix or Lagrangian,

and discrete Schrödinger operators.

• Based on the eigenstructures. Some methods use eigenvalues, some employ eigenvectors, and some

made use of both.

• Based on the dimensionality of the eigenstructure. The number of eigenvalues and eigenvectors

that are used to solve problems.
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3.2.4 LAPLACE-BELTRAMI MATRIX

The Laplace-Beltrami operator is defined as

�mvvvi =
3

η

∑
vvvj∈vvv∗i

(cotαij + cot βij)(vvvj − vvvi) (3.8)

where αij and βij are the angles ∠vvvivvvj−1vvvj and ∠vvvivvvj+1vvvj respectively (Fig. 3.3), and

η =
∑

tttj∈T (vvv∗i )

area(tttj) (3.9)

vi

αijvj−1

vj

vj+1
βij

FIGURE 3.3: Illustration of Laplace-Beltrami angles αij and βij .

We define the Laplace-Beltrami matrix as

L = D −W =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
di − ωii, if vvvi = vvvj ,

−ωij, if vvvi ∼ vvvj ,

0, otherwise.

(3.10)

whereW = (ωij) is the weighted adjacency matrix given by

ωij =
3

η
(cotαij + cot βij) (3.11)

and D is a diagonal matrix D given by

D = diag{di : vvvi ∈ V} (3.12)

where

di =
∑
vvvj∈vvv∗i

ωij (3.13)

Fig. 3.4 illustrates a triangular 3D mesh and its sparse Laplace-Beltrami matrix.
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(a) (b)

FIGURE 3.4: (a) 3D airplane model; (b) sparsity pattern of the Laplace-Beltrami ma-
trix.

3.2.5 SPANNING TREE AND MINIMUM SPANNING TREE

A spanning tree of a graph G is a connected graph that passes through all vertices of G. There are many

places where the spanning trees are used, i.e., minimizing the cabling expenses in a LAN, in routing algo-

rithms, connecting different factories together with roads, and bioinformatics. A spanning tree is acyclic

and specified by an ordered list of the edges connecting certain pairs [vvvi, vvvj], i �= j, along with a list of edge

adjacency relations. Fig. 3.5 shows a 4-vertex complete graph and Fig. 3.6 depicts some of its spanning

trees.

FIGURE 3.5: A 4-vertex complete graph.

As shown in [34] a graph with n vertices has Kn distinct spanning trees.

Kn = nn−2 (3.14)

For example, a graph with n = 6 vertices has 1296 distinct spanning trees. A weighted graph associates

a label (a real number that is called the weight or cost) with every edge in the graph. Minimum Spanning

Tree (MST) of a graph G is a spanning tree that has two properties: (1) it includes every vertex on the graph
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FIGURE 3.6: Some of the spanning trees of the complete 4-vertex graph.

(2) the total weight of all the edges is as low as possible. Generally, the MST of a graph is not unique. A

number of algorithms can be used to calculate MST, such as:

• Boruvka’s algorithm

• Prim’s algorithm

• Reverse-Delete algorithm

• Kruskal’s algorithm

Kruscal’s algorithm is a fast method and is described in Algorithm 2 [35].

3.2.6 ENTROPY OF A GRAPH

Entropy is the measure of unpredictability in a random process. For example, a fair coin has higher entropy

than an unfair coin, because a series of tosses with a fair coin has higher unpredictability than the same

number of tosses with an unfair coin. Réyni entropy of a discrete system expresses the quantification of

diversity, and the uncertainty or randomness of a system, and can be defined as

Ĥα(X) =
1

1− α
log2

(
n∑

i=1

pαi

)
(3.15)
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Algorithm 2 Kruscal’s algorithm for computing MST.
1: Create a forest F (A forest is a set of trees), where each vertex in the graph is considered a separate tree

2: Create a set S containing all the edges {ei} in the graph in the ascending order of weight
3: i← 1
4: while (S �= empty) and (F �= spanning) do
5: Delete the edge ei from S
6: if ei connects two different trees then
7: Add ei to the forest
8: Combine two trees into a single tree
9: else
10: Discard ei
11: end if
12: i← i+ 1
13: end while

where X is a discrete random variable with possible values {x1, x2, ..., xn}, p1, p2, ..., pn are the probabil-

ities of x1, x2, ..., xn respectively, and α ≥ 0, α �= 1 is the order of entropy [36]. If α → 1, then Shannon

entropy is achieved

Ĥα(X) = −
n∑

i=1

pi log2 pi (3.16)

As a generalization of Boltzmann-Gibbs entropy, Tsallis entropy has recently gained a great deal of interest

in statistical physics. When a system is composed of two statistically independent subsystems, Shannon-

Réyni entropy is the simple addition (sum) of the entropy of each subsystem and the correlations between

subsystems are not accounted for. To overcome this weakness, we use the Tsallis entropy of a system [37].

Tsallis entropy of a discrete distribution is defined as

Ĥα(X) =
1

α− 1

(
1−

n∑
i=1

pαi

)
(3.17)

where α is a real parameter. When α is close to 1, the normal Boltzmann-Gibbs entropy or Shannon-Réyni

entropy is recovered [37]. Let two random variables X = {xi} and Y = {yi} , with {pi} and {qi} as the

probabilities of {xi} and {yi} respectively. The joint probability density is defined as

p(xi, yj) = p(X = xi, Y = yj) (3.18)

If X and Y are independent then p(xi, yj) satisfies the following equality

p(xi, yj) = p(xi)p(yj) = piqj (3.19)

then Tsallis entropy of combined system can be written as

Ĥ(X,Y ) = Ĥ(X) + Ĥ(Y ) + (1− α)Ĥ(X)Ĥ(Y ) (3.20)
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Proof:

Ĥ(X) + Ĥ(Y ) + (1− α)Ĥ(X)Ĥ(Y ) =

1

α− 1

(
1−

n∑
i=1

pαi

)
+

1

α− 1

⎛⎝1−
m∑
j=1

qαj

⎞⎠+ (1− α)
1

α− 1

(
1−

n∑
i=1

pαi

)
× 1

α− 1

⎛⎝1−
m∑
j=1

qαj

⎞⎠ =

1

α− 1

⎛⎝1−
n∑

i=1

pαi

m∑
j=1

qαj

⎞⎠ =
1

α− 1

⎛⎝1−
n∑

i=1

m∑
j=1

pαi q
α
j

⎞⎠ =
1

α− 1

⎛⎝1−
n∑

i=1

m∑
j=1

(piqj)
α

⎞⎠ =

1

α− 1

⎛⎝1−
n∑

i=1

m∑
j=1

p(xi, yj)
α

⎞⎠ = Ĥ(X,Y )

This means that the correlation of two subsystems are accounted in the Tsallis entropy of the composed

system. This property is called pseudo-additivity. If α → 1, the Shannon entropy is obtained, and the

entropy of the composed system is the simple addition of the entropy of subsystems (additive system).

The estimator of Tsallis entropy for a 3D mesh is given by

Ĥα(V) =
1

1− α

[
L∗(V)
βmα

− 1

]
(3.21)

where L∗(V) is the total length of the minimum spanning tree [34]. α is referred to as an entropic index,

and β is a constant playing a role of bias correction [38]. To calculate the minimal spanning tree we use

Kruskal’s algorithm.

3.3 PROPOSED METHOD

The proposed method uses the Laplace-Beltrami matrix eigen-decomposition and Tsallis entropy of the

spanning tree to create a hash vector for a 3D mesh [39]. If the Laplace-Baltrami matrix is of size m×m,

then calculating the eigenvalues and eigenvectors of a large sparse matrix is a time and resource consumer

process and is proportional toO(m3). Thus, we need partition a mesh to smaller sub-meshes to increase the

hash generation speed. The implementation of partitioning algorithm is based onMeTiS method [40, 41, 42].

The proposed method is summarized in Algorithm 3 and Fig. 3.7.

Figs. 3.20-3.21 depict the 3D shark and dragon models and their eight corresponding sub-meshes. The

entropy of each partition is written under the displayed pictures.
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Algorithm 3 Proposed algorithm to generate the hash of a 3D mesh.
1: Partition the 3D meshM into s sub-meshes:

M = M1 ∪M2 ∪ ... ∪Ms (3.22)

where the cardinality of each vertex set of each sub-meshMk ismk.
2: Compute the entropy of each sub-mesh using

ξk  2

[
L∗(Vk)√
mk

− 1

]
, k = 1, 2, ..., s (3.23)

where ξk is the entropy of kth sub-mesh, and α index of Tsallis entropy is set to 0.5.
3: Apply the eigendecomposition to Laplace-Beltrami matrix of each sub-mesh (Lk) to generate the mk

eigenvalues and the corresponding eigenvectors.

Lk = BkΛkB
T
k (3.24)

where Bk = (bbb1, ..., bbbmk
) is an orthogonal matrix whose columns are eigenvectors and Λk = diag{λi :

i = 1, 2, ..., k} is a diagonal matrix of eigenvalues sorted in the descending order of the magnitude.
4: Retain r (r < mk) significant eigenvalues and their corresponding eigenvectors (which account for
most of the energy of the mesh).

5: Compute the hash of each sub-mesh with the following formula

μk =
r∑

i=1

λξki ||bbbi||2 (3.25)

6: Stack the hash values of all sub-meshes into one single vector to create the hash vector of the original
mesh.

hhh = (μ1, μ2, ..., μs) (3.26)

3.4 EXPERIMENTAL RESULTS

We applied the propose method to different 3D meshes. In all experiments, we selected s = 8. Higher s

value does not decrease the execution time significantly, but smaller s increases the execution time of the

program. Obviously for more complex 3D meshes, higher s value i.e. 16 or 32 or 64 should be selected.

The following attacks are applied to the sample 3D objects [44]

1. Tessellate: This modifier can be used to subdivide the faces in the current selection area. Tessellate

is mostly used to smooth curved surfaces and create additional mesh resolution for other modifiers.

A positive tension value causes meshes to become convex, while negative value makes the shape

concave. Fig. 3.8 shows a 3D mesh and the tessellation applied to polygonal or triangular faces.

2. Welder: It welds all vertices in a distance dw of a vertex. It is used to make a 3D mesh cleaner when
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Entropy, eigenvalues,

and eigenvectors

Retain the biggest

eigenvalue

and corresponding

eigenvector

r
times

Generate hash

value of

the partition

Hash of the Mesh

FIGURE 3.7: Block diagram of the proposed hash function.

FIGURE 3.8: Tessellate modifier: top: original mesh object, lower left: tessellation
applied to polygonal facets, lower right: tessellation applied to triangular faces [43].

the vertices are close or overlapped. In other words, it is used to smooth the tears in a mesh. If dw

is selected high, many vertices are welded and small meshes are removed. This deforms the shape of

the 3D object.

3. Optimize: It reduces the number of mesh vertices to make it simpler, without major change in mesh

quality. Sometimes, when the optimization is applied, no visual change can be detected in the 3D
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shape. It is, therefore, necessary to change the optimization value to get desirable results. Optimiza-

tion improves the rendering time of a 3D mesh. Fig. 3.9 shows a 3D model and its optimized version.

(a) (b)

FIGURE 3.9: Optimize modifier: (a) original model, (b) optimized model. (Face
threshold = 10, Edge threshold = 5)

4. Bend: It bends a 3D mesh in the x, y, or z direction by k degrees. Fig. 3.10 shows a 3D mesh and the

bent model.

(a) (b)

FIGURE 3.10: Bend modifier: (a) original model, (b) bent model. (Around x-axis 90◦)

5. Taper: It scales one of the ends of a 3D mesh (Fig. 3.11).

6. Twist: It twists a 3D mesh in the x, y, or z direction by k degrees. (Fig. 3.12).

7. Stretch: It stretches a 3D mesh in the x, y, or z direction by k percent. It creates a scale in one

direction and an opposing scale effect to the other two minor axes. (Fig. 3.13).

8. Rotate: It rotates a 3D mesh in the x, y, or z direction by k degrees.

9. Scale: It scales a 3D mesh in three directions by k percent.
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(a) (b)

FIGURE 3.11: Taper modifier: (a) original model, (b) taped model. (Around z-axis,
Amount = 5)

(a) (b)

FIGURE 3.12: Twist modifier: (a) original model, (b) twisted model. (Around z-axis,
Amount = 45◦)

10. Squeeze: It squeezes a 3D mesh by closing the vertices of a mesh to an axis (Fig. 3.14).

11. Noise: It creates a random noise based on 3D mesh shape and adds it to the vertices. In other words,

the noise modifier modulates the position of a 3D mesh vertex along any combination of three axes

(Fig. 3.15).

12. Push: It is used to create a bulging or shrunken appearance. Push modifier let us to change the vertices

of an object inward or outward along average vertex normals. Fig. 3.16 depicts a 3D mesh and the

pushed variations of it.

13. Skew: It skews a 3D mesh on x, y, or z direction n degree (Fig. 3.17).

14. Spherify: It distorts an 3D mesh in a spherical shape n percent (Fig. 3.18).
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FIGURE 3.13: Stretch modifier: left: original model, right: stretched model [43].

(a) (b)

FIGURE 3.14: Squeeze modifier: (a) original model, (b) squeezed model. (Amount =
1)

15. Relax: It separates the vertices that are close to an average distance and smooths the overall geometry

of a 3D mesh (Fig. 3.19).

Fig. 3.22 depicts some sample 3D models, and Fig. 3.23 shows the 3D vase model and the results of

the above attacks. Figs. 3.24-3.25 depicts 3D dragon and rabbit models and corresponding changes after

different attacks [44]. To evaluate the robustness of our method, we define the normalized correlation

between the hash vectors as follows

ρ =
|hhh1.hhh2|

||hhh1|| ||hhh2||
(3.27)

where hhh1 and hhh2 are the hash values before and after the attack respectively. Table 3.1 depicts the perfor-

mance of the proposed method. As we can see, the performance of the proposed hashing method is pretty

good and the correlation of the original and attacked 3D models are quite high.
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(a) (b)

(c) (d)

FIGURE 3.15: Noise modifier: (a) plane with no noise applied, (b) adding texture to
the plane creates a calm sea, (c) plane with fractal noise applied, (d) textured plane
with noise creates a stormy sea [44].

3.5 CONCLUSIONS

In this chapter, we introduced a 3D hashing method that partitions a 3D mesh into many sub-meshes. We

then generate the Laplace-Beltrami matrix for each sub-mesh, and eigen-decompose the matrix to extract

the eigenvectors and eigenvalues. Finally, we use the Tsallis entropy of each sub-mesh, as well as the

eigenvalues and eigenvectors to calculate the hash vector of the 3Dmesh. In the experimental results section,

we evaluated the performance and robustness of our algorithm under different well-known attacks.
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FIGURE 3.16: Push modifier: middle: original mesh object, top: push outward, down:
push inward [44].

(a) (b)

FIGURE 3.17: Skew modifier: (a) original model, (b) skewed model. (Z-axis 45◦)

(a) (b)

FIGURE 3.18: Spherify modifier: (a) original model, (b) spherified model. (Value =
30%)
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(a) (b)

FIGURE 3.19: Relax modifier: (a) original model, (b) relaxed model. (Value = 3)

TABLE 3.1: Normalized hash correlation results with different 3D models.

Attacks
3D Models

Cactus Dragon Female Happy small Femur Rabbit
Mesh Scaling with X*2 0.98 0.99 0.99 0.99 0.99 0.99

Mesh Scaling with Y*2 0.99 0.99 0.98 0.99 0.99 0.99

Mesh Scaling with Z*2 0.99 0.99 0.99 0.99 0.99 0.99

Rotation around X 45◦ 1.0 0.99 1.0 1.0 1.0 1.0

Rotation around Y 45◦ 1.0 0.99 1.0 1.0 1.0 1.0

Rotation around Z 45◦ 1.0 0.99 1.0 1.0 1.0 1.0

Mesh Smoothing (10 iterations) 0.99 0.99 0.99 0.99 1.0 0.99

Gaussian Noise (σ = 0.25) 0.99 0.99 0.99 0.99 0.99 0.99

Tessellate (Tension = 25) 0.74 0.90 0.68 0.95 0.74 0.94

Welder (Threshold = 0.1) 1.0 0.72 1.0 1.0 1.0 1.0

Optimize (Face threshold = 4, Edge
threshold = 1)

0.47 0.97 0.67 0.93 0.75 0.99

Bend (Z-axis 20◦) 0.57 0.92 0.68 0.96 0.78 0.99

Taper (Amount = 0.2) 0.77 0.91 0.77 0.92 0.86 0.99

Twist (Z-axis 45◦) 0.54 0.94 0.68 0.84 0.99 0.99

Stretch (Stretch = 0.2) 0.90 0.91 0.59 0.98 0.99 0.99

Squeeze (Axial bulge = 0.3) 0.98 0.88 0.99 0.99 0.97 0.99

Push (Value = 0.2) 0.92 0.91 0.48 0.90 0.71 1.0

Skew (Amount = 0.1) 0.91 0.95 0.64 0.95 0.94 0.99

Spherify (Percent = 30%) 0.64 0.89 0.74 0.95 0.78 0.98

Relax (Value = 1, Iteration = 1) 0.70 0.94 0.58 0.91 0.93 0.99
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(a) (b)

(c) μ1 = 8.1910 (d) μ2 = 74.7307 (e) μ3 = 17.7522

(f) μ4 = 92.1236 (g) μ5 = 5.4736 (h) μ6 = 5.2134

(i) μ7 = 5.9408 (j) μ8 = 18.0399

FIGURE 3.20: 3D shark model: (a) original mesh, (b) partitioned mesh. The parti-
tions are colored randomly, (c)-(j) minimal spanning trees for each partition and the
corresponding hash.
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(a) (b)

(c) μ1 = 0.7057E + 15 (d) μ2 = 0.5489E + 15 (e) μ3 = 0.7510E + 15

(f) μ4 = 0.8424E + 15 (g) μ5 = 1.0711E + 15 (h) μ6 = 1.0360E + 15

(i) μ7 = 0.6606E + 15 (j) μ8 = 0.7398E + 15

FIGURE 3.21: 3D dragon model: (a) original mesh, (b) partitioned mesh. The par-
titions are colored randomly, (c)-(j) minimal spanning trees for each partition and the
corresponding hash.
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(a) Cactus (b) Dragon

(c) Female (d) Happy small

(e) Femur (f) Rabbit

FIGURE 3.22: Some of the 3D models used in our experiments.
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(a) original mesh

(b) tessellate = 100 (c) welder = 0.1 (d) optimize = 4 (e) bend = 20◦

(f) push = 0.2 (g) squeeze = 0.3 (h) stretch = 0.2 (i) taper = 0.2

(j) twist = 45◦ (k) noise = 25 (l) relax = 1.0 (m) rotate = 45◦

(n) scale = 0.5 (o) skew = 0.1 (p) spherify = 30

FIGURE 3.23: 3D vase model: (a) original mesh, (b)-(p) mesh after different attacks.
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(a) original mesh

(b) tessellate = 25 (c) welder = 0.1 (d) optimize = 4 (e) bend = 20◦

(f) push = 0.2 (g) squeeze = 0.3 (h) stretch = 0.2 (i) taper = 0.2

(j) twist = 45◦ (k) noise = 25 (l) relax = 1.0 (m) rotate = 45◦

(n) scale = 0.5 (o) skew = 0.1 (p) spherify = 30

FIGURE 3.24: 3D dragon model: (a) original mesh, (b)-(p) mesh after different at-
tacks.
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(a) original mesh

(b) tessellate = 25 (c) welder = 0.1 (d) optimize = 4 (e) bend = 20◦

(f) push = 0.2 (g) squeeze = 0.3 (h) stretch = 0.2 (i) taper = 0.2

(j) twist = 45◦ (k) noise = 25 (l) relax = 1.0 (m) rotate = 45◦

(n) scale = 0.5 (o) skew = 0.1 (p) spherify = 30

FIGURE 3.25: 3D rabbit model: (a) original mesh, (b)-(p) mesh after different attacks.
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CHAPTER 4

CONCLUSIONS AND FUTURE WORK

This thesis has presented a robust approach for multimedia compression and encryption protection as well

as 3D mesh hashing. We have demonstrated the performance of the proposed algorithms through extensive

experiments, and compared our techniques to existing methods in the literature. A variety of images and 3D

objects were used in the experiments to show the effectiveness of the proposed schemes.

In the next Section, the contributions made in each of the previous chapters and the concluding results

drawn from the associated research work are presented. Suggestions for future research directions related to

this thesis are also provided in Section 4.2.

4.1 CONTRIBUTIONS OF THE THESIS

4.1.1 IMAGE COMPRESSION USING DST AND ENCRYPTION WITH AES

We proposed a compression method using discrete shearlet transform, and an encryption using the Ad-

vanced Encryption Standard (AES) method. We tested our proposed compression/encryption technique

through extensive experiments. The experimental results from various tests clearly demonstrate the im-

proved performance of the proposed compression/encryption scheme in terms of bandwidth saving and

security enhancement.

4.1.2 3D MESH HASHING

We proposed a efficient methodology for 3D object hashing. The idea is to partition a 3D mesh into s sub-

meshes (s ∈ N), followed by the application of eigen-decomposition to each sub-mesh and derivation of
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hash values for all sub-meshes. The hash vector of the mesh is a vector containing all hashes of the sub-

meshes. The performance of the proposed hashing method was evaluated through extensive experiments

which clearly showed excellent resiliency against a slew of attacks.

4.2 FUTURE RESEARCH DIRECTIONS

Several interesting research directions, motivated by this thesis, are discussed below:

4.2.1 IMAGE APPROXIMATION USING SHEARLETS

The approximation and compression scheme introduced in Chapter 2 uses the shearlet transform as its

building block. The implementation of the shearlet transform with current algorithms is, however, slower

than in the case of wavelets. Recent algorithms proposed in [6] may be used to increase the DST calculation

speed. In addition, efficient compression algorithms, such as EZW, may also be employed in the shearlet

framework. We would like to extend the compression method of the shearlet transform in order to obtain a

higher compression ratio.

4.2.2 CHAOTIC APPROACH TO IMAGE ENCRYPTION

In addition to the satisfactory experimental results obtained by applying the AES encryption method, we

can still make use of new image encryption methods, which are specifically designed for image encryption.

Recently, the use of chaotic maps for image encryption has gained a lot of interest [14]. These maps can

generate a high quality random sequence of numbers that are extremely sensitive to the initial parameter.

We can use this sequence of random numbers to create an encryption algorithm with potential applications

to mobile computing.

Smartphones and tablets are becoming increasingly popular. They have powerful hardware which can

handle multi-tasking processes. Thus, there is an increasing demand for security algorithms and compres-

sion methods. We have developed a secure short message service (SMS) software tool for Android devices,

which uses AES encryption protocol to send and receive SMS. The program screenshots are shown in

Fig. 4.1. This program can be extended to send and receive medical images in a secure way to other devices

or PCs via email or multimedia messaging service (MMS). In addition, other encryption methods, such as

the chaotic map combined with compression methods, such as the EZW and the shearlet approximation can

be implemented in Android devices.
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(a) (b)

FIGURE 4.1: (a) Android emulator main screen, (b) secure SMS program screenshot.
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